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Abstract: Motivated by the recent “Cosmos Project” observation of dark-matter concen-

trations with no ordinary matter in the same place, we study the question of the existence

of compact objects made of pure dark matter. We assume that the dark matter is neu-

tralino, and compare its elastic and annihilation cross sections. We find that the two cross

sections are of the same order of magnitude. This result has a straightforward and impor-

tant consequence that neutralinos comprising a compact object can not achieve thermal

equilibrium. To substantiate our arguments, by solving Oppenheimer-Volkoff equation we

constructed a model of the star made of pure neutralinos. We explicitly showed that the

condition for the thermal equilibrium supported by the Fermi pressure is never fulfilled

inside the star. This neutralino state can not be described by the Fermi-Dirac distribution.

Thus, a stable neutralino star, which is supported by the Fermi pressure, can not exist. We

also estimated that a stable star can not contain more than a few percents of neutralinos,

most of the mass must be in the form of the standard model particles.
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1 Introduction

Recent observational data [1–3] indicate that the universe contains a significant fraction

(22%) of dark matter whose origin is still unclear. A possible solution to this problem

comes from supersymmetric (SUSY) models in the form of neutralino [4]. Neutralino is the

lightest supersymmetric partner in SUSY, with the mass of about 100 GeV, and is stable.

It interacts with the gravitational and weak interactions only, which indicates that it is

”dark”. Weak interactions and neutralino mass are sufficient to satisfy the relic density

needed to explain the observed portion of the dark matter in the universe.

In a remarkable recent study [5], a detailed distribution of dark matter as a function

of the redshift in a part of our universe was obtained. These observations indicate that

dark matter plays a role of a scaffolding upon which ordinary matter builds structures.

However, the observations show that large pockets with only dark matter (and no ordinary

matter) also exist. Then a natural question arises whether compact objects like planets,

stars or maybe even larger structures made exclusively of dark matter can exist.

Recent study discussed the existence of stars powered by annihilation of neutralinos [6].

However, these objects contain mostly baryons and only several percents of dark matter.

Compact objects made of pure dark matter were discussed in [7–10]. There it was assumed

that the equilibrium of these stars was supported by the Fermi pressure. It was argued

that the size of such a dark matter star is less than 1m with the mass less than 10−4M⊙,

if neutralino mass is around 100 GeV [8]. Since the density inside a neutralino star is very

high, neutralinos collide frequently. These earlier studies used the estimate that identical

non-interacting fermions have elastic cross section of about πλ2, where λ is de Broglie

thermal wavelength [11]. With this assumption, non-relativistic neutralinos have the elastic

cross section which is much larger than the weak interaction cross section. If this claim is

indeed correct, than a thermal neutralino star could exist, since neutralino annihilation can

be neglected in this case. However, it is unlikely that the neutralino elastic cross section is as

large as πλ2. For example, the large elastic cross section would directly contradict the recent

”bullet cluster” observations [12]. It is therefore very important to explicitly check this fact.
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In order to achieve a thermal distribution, the lifetime of a particle has to be much

longer than the characteristic interaction time. Stable neutralinos could in principle achieve

thermal state in cosmological context. However, at high densities annihilation can not

be neglected. A necessary condition for the thermal equilibrium among neutralinos (at

densities smaller than (100 GeV)4) is that the neutralino-neutralino elastic cross section is

much larger than the neutralino-neutralino annihilation cross section.

2 Neutralino elastic and annihilation cross sections

In this section, we will explicitly calculate and compare the neutralino-neutralino elastic and

annihilation cross sections. We will show that they are comparable, i.e. of the same order of

magnitude. This implies that neutralinos can not be in a thermal equilibrium in a compact

object. After several encounters they will annihilate and be converted into the standard

model particles. The thermal state of neutralions can not be reached. Thus, the neutralinos

can not be described by the the Fermi-Dirac distribution. This then indicates that compact

objects made only of neutralinos and supported by the Fermi pressure can not exist.

In SUSY, the neutralinos χ0
i are the mixed states of the neutral higgsinos, Ψ1

H1
and

Ψ2
H2

, and the neutral gauginos, binos (λB) and winos (λ3
A) [13]. The mixing and mass

matrices are given by

ZT
N











M1 0 −ev1

2cW

ev2

2cW

0 M2
ev1

2sW

−ev2

2sW
−ev1

2cW

ev1

2sW
0 −µ

ev2

2cW

−ev2

2sW
−µ 0











ZN =











Mχ0

1

0 0 0

0 Mχ0

2

0 0

0 0 Mχ0

3

0

0 0 0 Mχ0

4











(2.1)

where ZN is the matrix that diagonalizes the mass matrix. Parameters M1, M2 and µ

are mass parameters in the potential, v1 and v2 are the vacuum expectation values of the

two higgsions, sW and cW are sinus and cosinus of the weak angle, while e is the electron

charge. The matrix ZN also defines the mixing between the states

λB = iZ1i
N κ0

i

λ3
A = iZ2i

N κ0
i

Ψ1
H1

= iZ3i
N κ0

i

Ψ2
H2

= iZ4i
N κ0

i (2.2)

χ0
i =

(

κ0
i

κ̄0
i

)

(2.3)

Here, Mχ0

1

< Mχ0

2

< Mχ0

3

< Mχ0

4

.

Neutralino χ0
1 is presumably the lightest supersymmetric particle, and can not decay

into other supersymmetric particles. Because of the R-parity conservation, it can not decay

into the standard model particles either. Therefore, neutralino is stable. The only way to

destroy neutralinos is annihilation.

– 2 –
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Figure 1. The possible vertices of neutralino-neutralino interaction.

The cross section for the two-particle final state is

dσ

dΩ
=

|P1|
16π2EAEB|vA − vB |Ecm

|M(PA, PB → P1, P2)|2 (2.4)

In our case, both particle A and particle B are neutralinos. In an elastic collision, particles

1 and 2 are neutralinos. In an annihilation process, particles 1 and 2 are the standard

model particles. P1 is a momentum of the particle 1. vA and vB are velocities of particles

A and B respectively. EA and EB are energies of particles A and B respectively. M is the

scattering amplitude. If the two incoming neutralinos have non-relativistic velocities, say

v ∼ 100km/s, then the momentum P1 of the light standard model particle (except maybe

for the top quark) in an annihilation process is about v/c ∼ 1000 times larger than the

momentum P1 of the neutralino in an elastic collision. Thus, only for highly relativistic

incoming neutralinos elastic collisions will have P1 of the same order of magnitude as an

annihilation process. Since for various different channels all of the parameters are fixed,

except for the amplitude, in what follows we compare the amplitudes only.

We now look for the possible neutralino-neutralino elastic interactions. The possible

neutralino-neutralino-something vertices can be found in [13] and are shown in figure 1.

The values of the vertices are

(A) :
ie

2sW cW
γµ
[

(Z4i∗
N Z4j

N − Z3i∗
N Z3j

N )PL − (Z4i
N Z4j∗

N − Z3i
N Z3j∗

N )PR

]

(2.5)

(B) :
ie

2sW cW

{[

(Z1k
R Z3j

N − Z2k
R Z4j

N )(Z1i
N sW − Z2i

N cW )

+(Z1k
R Z3i

N − Z2k
R Z4i

N )(Z1j
N sW − Z2j

N cW )
]

PL

+
[

(Z1k
R Z3i∗

N − Z2k
R Z4i∗

N )(Z1j∗
N sW − Z2j∗

N cW )

+(Z1k
R Z3j∗

N − Z2k
R Z4j∗

N )(Z1i∗
N sW − Z2i∗

N cW )
]

PR

}

(2.6)

(C) :
e

2sW cW

{[

(Z1k
H Z3j

N − Z2k
H Z4j

N )(Z1i
N sW − Z2i

N cW )

+(Z1k
H Z3i

N − Z2k
H Z4i

N )(Z1j
N SW − Z2j

N cW )
]

PL

+
[

(Z1k
H Z3i∗

N − Z2k
H Z4i∗

N )(Z1j∗
N SW − Z2j∗

N cW )

+(Z1k
H Z3j∗

N − Z2k
H Z4j∗

N )(Z1i∗
N SW − Z2i∗

N cW )
]

PR

}

(2.7)

Here, mZ = e
2sW cW

(v2
1 + v2

2)
0.5 and mW = e

2sW
(v2

1 + v2
2)

0.5. The masses of the Z and

W bosons are mZ and mW respectively. From these vertices, the possible Feynman dia-

grams for elastic neutralino-neutralino interactions are shown in figure 2. Consider now

– 3 –
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Figure 2. The neutralino-neutralino elastic collisions: The dashed line can be Z0
µ, H0

k , and A0
k.

From the top down are s-, t- and u-channel respectively.

non-relativistic neutralino-neutralino elastic collision. The amplitude in the s-channel is

approximately

M
(s)
el Z0

µ
∼
(

e

sW cW

)2

χ̄0
1γ

µχ0
1

1

s − m2
Z

χ̄0
1γµχ0

1 (2.8)

M
(s)

el H0

k
,A0

k

∼
(

e

sW cW

)2

χ̄0
1χ

0
1

1

s − m2
H

χ̄0
1χ

0
1 (2.9)

To simplify these equations, omit writing the projectors PL and PR, since they will not

affect the order or magnitude estimate. Here, s ∼ 2M2
χ0

1

, while m is the mass of H0
k and

A0
k. M

(s)

el H0

k
,A0

k

is the amplitude if H0
k or A0

k are the mediators, while M
(s)
el Z0

µ
is the amplitude

if Z0
µ is the mediator. The t- and u-channel elastic amplitudes are

M
(t,u)

el H0

k
,A0

k

∼
(

e

sW cW

)2

χ̄0
1χ

0
1

1

vt,u − m2
H

χ̄0
1χ

0
1 (2.10)

M
(t,u)
el Z0

µ
∼
(

e

sW cW

)2

χ̄0
1γ

µχ0
1

1

vt,u − m2
Z

χ̄0
1γµχ0

1 (2.11)

vt,u can be t or u. In this case vt,u ∼ 0. If masses of H0
k , A0

k and Z0
µ are comparable to

Mχ0

1

(and the energies are not tuned to be in the resonant channel), then all the channels

are of the same order of magnitude.

We now compare the s-channel elastic scattering amplitude with the s-channel anni-

hilation amplitude (shown in figure 3). For the simple order of magnitude estimate we

ignored the production of Z and W bosons. We note that this a conservative approxima-

tion since these channels will only enhance conversion of neutralinos into standard model

particles. In order to find the annihilation amplitude we need to calculate the three vertices

in figure 4. The values are

(A) : D
ie

2sW cW
γµ(PL − Es2

W ) (2.12)

(B) :
i√
2
YfZjk

R (2.13)

(C) :
1√
2
YfZjk

H γ5 (2.14)

Parameters D, E, Yf and j have different values for different fermions. For u-quark we

have D = −1, E = 4
3 , Yf =

√
2mf/v2 and j = 2. For d-quark we have D = 1, E = 2

3 ,

– 4 –
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Figure 3. The neutralino-neutralino s-channel annihilation: The dashed line represents Z0
µ, H0

k ,

and A0
k.
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Figure 4. The s-channel annihilation vertices.

Yf =
√

2mf/v1 and j = 1. For e we have D = 1, E = 2, Yf =
√

2mf/v1 and j = 1. For ν

we have D = −1, E = 0, Yf = 0 and j = 2. The amplitudes are

M
(s)
ann Z0

µ
∼
(

e

sW cW

)2

f̄γµf
1

s − m2
Z

χ̄0
1γµχ0

1 (2.15)

M
(s)

ann H0

k
,A0

k

∼
(

e

sW cW

)

f̄ cfYf
1

s − m2
H

χ̄0
1χ

0
1 (2.16)

where f c is antiparticle of f . Again we omit writing PL and PR. Eq. (2.15) gives the

amplitude if the mediator is Z0
µ, while eq. (2.16) gives the amplitude if the mediators are

H0
k and A0

k. The amplitude in eq. (2.15) is of the same order of magnitude as the amplitude

for the elastic scattering in eq. (2.8). The amplitude in eq. (2.16) is roughly (mf/MZ)

times the amplitude for the elastic scattering in eq. (2.9). If mf is of the same order of

magnitude as MZ , we can conclude that the elastic and annihilation scattering amplitude

are also of the same order of magnitude. The only case when this may not happen is when

the neutralino is lighter than the top quark and its initial energy is very low. In that

case top quark can not be in the final state for kinematic reasons. However, as mentioned

earlier, the cross section also includes the momentum of the emitted particle. Since the

next particle in the mass hierarchy is b-quark, which is much lighter than neutralino, the

final state particle will have a large momentum. Then the annihilation cross section will

be enhanced by a large factor as explained after eq. (2.4). Also, there are more branches in

the annihilation process than in an elastic collision since the fermion f in figure 3 stands

for several species of particles. This is more than enough to overcome the mass suppression

factor if the neutralino is lighter than the top quark. Finally, for our argument to work, it

is enough that there exists only one annihilation channel which is comparable to the elastic

cross section. As we will show, t- and u- annihilation channels have no mass suppression

factors regardless of the sign of the neutralino-top quark mass difference.

– 5 –
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Figure 5. The neutralino-neutralino t- and u-channel annihilation: The dashed line represents a

sfermion.

0

i?f

f

Figure 6. The vertices of fermion-neutralino interaction.

We now compare the t- and u-channels elastic scattering amplitude with the cor-

responding annihilation amplitude (shown in figure 5). In this case, the mediators are

sfermions. The vertices needed for these diagrams are shown in figure 6. The values are

i

(

e

sW cW
AfPL +

e

cW
BfPR

)

(2.17)

where Af and Bf are constants, which are different for different species [13]. The ampli-

tude is

M (t,u)
ann ∼

(

e

sW cW

)2

f̄ cχ0
1

1

vt,u − m2
f̃

f̄χ0
1 (2.18)

Again we omitted writing PL and PR. Here, vt,u is the square of the momentum transfer,

while mf̃ is the mass of sfermion f̃ . If mf̃ is not much different from the mass of Z0
µ, H0

k ,

and A0
k, then the t- and u-channel annihilation amplitudes are of the same order as the t-

and u-channel elastic amplitude in (2.10).

This analysis indicates that the neutralino annihilation amplitude is at least of the same

order as the neutralino elastic amplitude. The annihilation cross section can be much larger

than elastic cross section, when one includes the momentum difference between the light

standard model quarks and heavier neutralinos in the final state, as explained after eq. (2.4).

3 Model of the star made of pure neutralinos

In this section we quantify our arguments about the non-existence of the star made of pure

neutralinos by treating the Pauli exclusion force as a real interaction between the fermions

(different than the weak interaction).

First we will show that the mean free path for the interaction caused by the Pauli

exclusion force must be shorter than the distance between fermions if the Fermi pressure is

to provide stability. To show this, we consider a general setup like in figure 7. A wall with

an area A is embedded in a group of particles (either fermions or bosons). The number

– 6 –
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Figure 7. The black dots are particles moving with velocity ~v(E). A small wall of area A is

embedded inside the particle distribution.

density of particles with energy E is n(E). The particles move with velocity ~v(E). The

total particle number density, N , and energy density, ρ, are

N =

∫

n(E)dE (3.1)

ρ =

∫

n(E)EdE (3.2)

The pressure can be calculated from the momentum transfer of particles that hit the

area A. In a three-dimensional space, about 1/6 of the particles move toward one side of

the wall and bounce back. The momentum transfer, P, in the time interval ∆t is

∆P(E) =
n(E)AEv2∆t

3
(3.3)

The pressure is

P =

∫

∆P(E)

A∆t
dE =

∫

nEv2

3
(3.4)

This is a common result in statistical mechanics. Note that the crucial assumption in

eq. (3.3) is that every particle that arrives at the wall A is bounced back. In other words,

the efficiency of the interaction between the wall and particles is 100%. If the wall bounces

back only γ(E) of the incoming particles (i.e. 1 − γ(E) of the particles pass through the

wall) eq. (3.3) must be rewritten as

∆P(E) = γ(E)
n(E)AEv2∆t

3
(3.5)

In this case, the pressure must be rewritten as

P =

∫

∆P(E)

A∆t
dE =

∫

γ(E)nEv2

3
(3.6)

The factor γ(E) then measures the departure from the thermal pressure (γ(E) = 1

means the pressure is equal to the thermal pressure).

Now consider the wall made of particles themselves. From the number density, the size

of a particle is l = n−1/3. The crucial factor γ(E) can be estimated from the ratio between

the interaction cross section between the particles, σ(E), and the area l2:

γ(E) =
σ(E)

l2
=

l

λ(E)
(3.7)

– 7 –
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Here, λ = 1/(nσ) = l3/σ is the mean free path of the particles. If λ < l, i.e. the mean

free path is shorter than the distance between the particles, then we need to set γ(E) = 1.

However, if the mean free path is larger than the distance between the particles, γ(E) < 1.

In that case, the pressure is smaller than the thermal pressure. In the extreme case when

λ ≫ l the particles practically do not interact with each other, i.e. γ(E) ≈ 0, and the

pressure can not be built up at all. These arguments are true both for bosons and fermions.

For fermions, the Pauli exclusion force builds up the Fermi pressure between the fermions.

However, for this to happen, the mean free path for fermions must be smaller than (or at

most equal to) the distance between the fermions. We will use this result in what follows.

We now model the structure of the star made of pure dark matter. The relativistic

mean field approximation [15] implies that the density, pressure and number density of

neutralinos can be written as (for details see [10])

ρ =

∫ kF

0

√
k2 + m∗2k2dk

π2
+

m2
HH2

2
+

m2
hh2

2
+

m2
zZ

2

2
(3.8)

P =

∫ kF

0

k4dk

3π2
√

k2 + m∗2
− m2

HH2

2
− m2

hh2

2
+

m2
zZ

2

2

N =
k3

F

3π2

Here, kF is the Fermi momentum. Also

H =
−gH

m2
Hπ2

∫ kF

0

m∗2

√
k2 + m∗2

k2dk (3.9)

h =
−gh

m2
hπ2

∫ kF

0

m∗2

√
k2 + m∗2

k2dk

Z =
gz

3m2
zπ

2
k3

F

m∗ = mχ + gHH + ghh

The numerical values of the relevant parameters are mχ = 1.01679763 × 106 MeV , mH =

7.5336438 × 105 MeV , mh = 1.18760345 × 105 MeV , mz = 9.1187 × 104 MeV , gH =

3.131 × 10−1, gh = −2.705 × 10−2, and gz = 1.43 × 10−3.

The neutralino annihilation cross section is σa ∼ 1 × 10−10MeV −2. The mean free

path for annihilations is λa = 1/(Nσa). As we showed above, the mean free path of the

Pauli exclusion force is about the distance between fermions, i.e. λp = N−1/3. To keep

neutralinos in thermal equilibrium, we need

λp

λa
= N2/3σa ≪ 1 (3.10)

From figure 8, we see that the condition (3.10) can not hold at high kF (i.e. high

densities).

We now write the Oppenheimer-Volkoff equation [16]

dP

dr
= −(ρ + P )(M + 4πPr3)

r2(1 − 2M/r)
, (3.11)

dM

dr
= 4πρr2.

– 8 –
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Figure 8. The dependence of the ratio between the mean free paths for the Pauli exclusion force

and annihilations λp/λa on the Fermi momentum kF . The condition (3.10) breaks down for high

kF (high densities).

Combining eqs. (3.11) with the equation of state given by eqs. (3.8), we can find the

structure of the neutralino star. We need to setup the boundary condition for kF , so we

choose kF = 0.5mχ at the center of the compact object. We then numerically integrate

eqs. (3.11). The radius of the star is the distance from the center at which the pressure

drops to zero (in this case the radius of the star is 1.2cm). This gives us the structure of

the star, i.e. energy density, pressure and neutralino number density as functions of the

distance from the center of the star.

Figure 9 shows the ratio of λp/λa vs. radius. Clearly, the ratio is about 1 throughout

the star. The ratio drops sharply only at the surface of the star. This indicates that the

Pauli exclusion force is not sufficient to overcome annihilation. The neutralinos decay into

the standard model particles before the star becomes thermal.

One may roughly estimate the ratio between the standard model particles and neu-

tralinos which is needed to stabilize the star. This ratio will depend on the mean free path

for neutralino annihilation and that of the standard model particles. For a condition (3.10)

to hold, the mean free path of the standard model particles can not be greater than several

percents of the mean free path for neutralino annihilation. This implies that the neutralino

content in the star can not be greater than a few percents.

Finally, we comment on the interplay between gravity and annihilations. Gravity

brings neutralinos together, but annihilations put an upper limit to the density of (pure)

dark matter clumps. Even without detailed numerical simulations we can perform a simple

order of magnitude estimate. Consider for example a neutralino clump that was presumably

created when the galaxy was formed, and survived till now. The density of the clump can

be calculated from the condition

∆T <
λa

vχ
=

1

σaNvχ
(3.12)
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Figure 9. The dependence of the ratio between the mean free paths for the Pauli exclusion force

and annihilations λp/λa on the distance from the center of the compact object made of pure dark

matter. Throughout the star the condition (3.10) is violated. The ratio λp/λa drops sharply only

near the surface of the star.

where ∆T is the lifetime of a galaxy — about 10 Gyrs, while the velocity of dark matter is

assumed to be 100 km/s. N is the total number density of neutralinos and the neutralino

annihilation cross section is σa ∼ 1 × 10−10MeV −2. From this condition we find that the

number density of the clump must be lower than N ∼ 6.2× 10−35 GeV3 ≈ 8.2× 1012 m−3,

which for a 100 GeV neutralino gives the mass density of 10−13g/cm3. For more general

constraints, one would need to perform detailed numerical simulations of the gravitational

collapse with annihilations included.

4 Conclusions

In conclusions, we studied here whether pure dark mater can make compact objects like

stars. The study was motivated by the remarkable recent observations [5] that there are

regions in our universe with pure dark matter distribution without the visible presence of

the ordinary matter. We explicitly calculated and compared the neutralino elastic cross

section with the annihilation cross section and found them to be comparable. This means

that, in each encounter, neutralinos have about the same chance to annihilate into the

standard model particle or to be scattered. If they are scattered, they exchange energy

and momentum and after many repeated encounters will reach the thermal equilibrium.

However, annihilation will prevent this scenario from happening. Once neutralions get

converted into the standard model particles they can not come back. This situation can

not be described by the Fermi-Dirac equation of state. This implies that a stable neutralino

star supported by the Fermi pressure can not exists.

To substantiate our arguments, by solving Oppenheimer-Volkoff equation we con-

structed a model of the star made of pure neutralinos. We explicitly showed that the
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condition for the thermal equilibrium supported by the Fermi pressure is never fulfilled in-

side the star. We also estimated that a stable star can not contain more than a few percents

of neutralinos, most of the mass must be in the form of the standard model particles. This

may have implications for the question why we are made of the standard model particles

if most of the matter in the universe comes in the form of dark matter. For intelligent

observers like us to evolve, structures like stars and planets are (perhaps) necessary.

One of the possibilities to have neutralinos in thermal equilibrium is an environment

with enormous densities, of the order of (100 GeV)4. If such an environment is thermal-

ized, then its temperature is of the order of the rest mass of the neutralino. In this case

neutralinos can be produced thermally. This can only happen in early universe or in the

central core of a very dense star. In the case of the central core of a star, this region must

be very tiny, with the radius smaller than 1cm [14]. Again, such an object can not be

supported by the Fermi pressure. The annihilation process would be so quick that the star

could not exist long enough to be observed.

The other possibility to have neutralinos in thermal equilibrium is an environment

with very low densities. In an environment where the neutralino density is so low that

neutralinos barely collide with each other, their effective lifetime is much longer than the

weak-scale characteristic collision time. In such conditions, gravitational cooling may bring

neutralinos to equilibrium. This is the mechanism behind dark matter halo formation.

However, these are rather low density dark matter distributions and can not be called

compact objects. At higher densities gravitational scattering can not compete with weak

interactions. Therefore, gravitational cooling may bring neutralinos together but can not

play an important role in the subsequent evolution of the compact object.

We assumed here that the dark matter is comprised of neutralinos. However, any par-

ticle with the mass around the weak energy scale and weak scale interaction cross section

(such is neutralino) automatically has a relic density which satisfies observational con-

straints. Thus, we expect that the same conclusions will hold for more general models.

Therefore, despite the fact that regions in our universe with the pure dark matter distri-

bution were observed, compact objects like planets, stars and larger systems like galaxies

made of dark matter are unlike to exist.

We also note that we used the dark matter models in their most standard form. In some

exotic models, dark matter particles with an extra self-interaction [17–24] were considered

to solve the problems with subhaloes [25, 26], cuspy cores [27–30] and recent apparent

PAMELA [31], ATIC [32] and FERMI [33] observations. In the context of these models,

this extra self-interaction has to be properly included.
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